INCREASING THE CREATIVITY OF NATURAL SCIENCES IN THE WATER CYCLE MATERIALS THROUGH A CONTEXTUAL APPROACH IN GRADE 5 MI YAA BUNAYYA

Anis Farahanim Abd Rahman¹, Fajar Dwi Mukti²
Universiti Putra Malaysia, Malaysia¹, State Islamic Institute of Fattahul Muluk Papua, Indonesia²
Email: ar.anisfarahanim@gmail.com¹, fajardwimukti@gmail.com²

ABSTRACT

The aims of this study were: To increase the creativity of science learning on the water cycle material through a contextual approach to fifth-grade students at MI Yaa Bunayya. This type of research is a class action research of 2 cycles. Each cycle consists of 4 stages: planning, implementation of the action, observation, and reflection. The research subjects were fifth-grade students at MI Yaa Bunayya. Data collection techniques using observation. There is an increase in student creativity, as indicated by the rise in student attitudes when participating in learning in each cycle. Cycle I, with a percentage of 65%, includes sufficient criteria. Cycle II obtained a percentage of 87.5% with creativity criteria very good. Contextual can increase the creativity of science learning on the water cycle material through a contextual approach to grade 5 MI Yaa Bunayya.

Keywords: Creativity, Natural Science, Contextual Approach

INTRODUCTION

Education is a conscious effort that is carried out systematically to create an atmosphere of teaching and learning so that students can develop their potential.

The goals of Indonesian education are in accordance with Constitution No. 20 of 2003 concerning the purposes of National education, namely that education in Indonesia aims to develop the potential for humans to become creatures of faith and fear of God Almighty, of noble character, healthy, knowledgeable, capable and creative, independent and be a responsible citizen.

Educational development is an activity that needs to be done, especially in learning Natural Sciences. Science is a natural learning concept and relates broadly to human life. Science learning plays a very important role in educational and technological development. Science learning is expected to be a vehicle for students to learn about themselves and the environment and further development in its application in everyday life.

Based on this opinion, it can be explained that learning Natural Sciences has expected students are genuinely creative. So that it will impact students' memories of what is learned and will last longer. A concept is easily understood and remembered by students if the idea is presented through appropriate, clear, and exciting procedures and steps.

Focusing on learning is very necessary. The existence of a learning approach using real life can increase greater creativity. Thus it is hoped that students' abilities can also be improved by fostering a good learning approach. Therefore, the teacher must be able to follow all the learning processes closely. In reality, science learning is considered a hard lesson and a scourge for students. Students' ignorance regarding the use of science in everyday applications causes them to get bored and not interested in science lessons quickly. Hence, they lack an understanding of the basic concepts of science.

This problem is caused because there are still teachers who carry out the learning process not in accordance with the characteristics of students. In the process, the teacher explains the material using the lecture method, and students listen and then record things that are considered essential. The primary source in this process is the teacher's explanation. This causes the information received to be less attached to students. With this step, students also get bored quickly. If this feeling continues to increase, it will hurt the mindset of students, so creativity in students will decrease. The low invention of science is a phenomenon that needs attention in every elementary school.

It is necessary to find appropriate learning solutions to overcome these sustainable problems. The teachers continue to compile and apply various models so that students are interested and enthusiastic about learning science. One learning approach to overcome students' low ability in the water cycle material is to use a contextual approach. Contextual learning (Contextual Teaching and Learning) or CTL is a learning concept that emphasizes the linkages between learning materials and the real world of students' lives so that students can connect and apply competencies in everyday life.

If viewed from this opinion, the contextual approach is learning and teaching that involves students in essential activities that help them relate academic lessons to the real-life context they face. By linking the two, students construct projects or invent interesting problems when they make choices, seek information, and draw conclusions. When they creatively choose, organize, organize, plan, investigate, question, and make decisions, they link academic content with context in life situations, and in this way, they find meaning.

The more connections students find within a broad context. The more meaningful the content will be for students. The contextual approach, a distinct educational approach, does more than guide students in combining academic subjects with their context. Contextual involves students searching for the meaning of the "context" itself. With the contextual model, students are directly involved in acquiring science concepts and solving problems so that the teaching obtained is more easily understood and understood by students.

The above problems also occur at MI Yaa Bunayya. Based on these problems, this research examines the increase in the creativity of fifth-grade elementary school students in the water cycle material with a contextual approach. This contextual learning is expected to be one of the solutions to overcoming students low creativity to improve their ability to understand the water cycle material.

RESEARCH METHODS

This study uses Classroom Action Research (CAR). This research is planned for cycles, cycles I and II. If it is unsuccessful, it will be continued in the following process. The CAR method used in this study is the CAR method, according to Kemmis and Mc Taggart uses a reflection spiral system consisting of several processes. Kemmis and Mc Taggart's method explained that one cycle or round consists of four components, namely planning, action, observation, and reflection.

RESULTS AND DISCUSSION

Based on the study's results, there was an increase in students' creativity in science lessons using a contextual approach in cycle I and cycle II. Increasing student creativity is presented in the following table:
Table 1. Recapitulation of student creativity

<table>
<thead>
<tr>
<th>No</th>
<th>Indicators</th>
<th>Cycle I</th>
<th>Cycle II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Have a deep curiosity</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>2.</td>
<td>Able to see the problem from different points of view</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>3.</td>
<td>Independent in thinking</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>4.</td>
<td>Confident</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>5.</td>
<td>Free to express opinions</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Sum</td>
<td>130</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Percentage</td>
<td>65%</td>
<td>87.5%</td>
</tr>
<tr>
<td></td>
<td>Category</td>
<td>Enough</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Table I shows that indicators of student creativity have increased from cycle I to cycle II. The results of obtaining student creativity scores can be seen in the following histogram:

![Figure 1. Histogram of increasing student creativity](image-url)
Based on the table and histogram above, it is clear that there is an increase in student creativity from cycle I to cycle II. In cycle I, I got a total score of 130 with a percentage of 65%, including sufficient creativity. In cycle II, a score of 175 with a percentage of 87.5% was included in the very good creativity category, so there was an increase from cycle I to cycle II. With the indicator having a deep curiosity, the total score is 25 in the first cycle, while in the second cycle, the total score obtained is 40, so the first cycle to the second cycle has increased. In the aspect of seeing the problem from various points of view, the total score obtained was 25 in the first cycle, while in the second cycle, there was an increase with a total score of 35. In the independent indicator aspect of thinking, the total score obtained was 30 in the first cycle, while in the second cycle, the total score obtained was 35, so from the first cycle to the second cycle, it increased.

On the self-confidence indicator, the total score obtained was 25 in the first cycle, while in the second cycle, the total score obtained was 30, so it increased from the first cycle to the second cycle. In the last indicator, freedom in expressing opinions, a score of 25 was obtained in the first cycle. In contrast, in the second cycle, the total score received was 35, so there was an increase in the first and second cycles.

Increased student creativity because when learning using a contextual approach is controlled, students are trained to think creatively in education. Learning is done using concrete objects that students can observe, interacting directly to encourage creativity, and students don't get bored quickly. From the observations of student creativity in cycle I, students was seen to be creative in learning, but there were still students who were not creative in education. When students took part in knowledge, they needed to dare to express opinions and were still unsure of themselves. This meant that there were indicators that had yet to be fulfilled, so students it lacks creativity. After reflecting on cycle I, then in cycle II, there was an increase with a total score of 175 with a percentage of 87.5% belonging to the very good creativity category, so there was an increase from cycle I to cycle II. Students dare to express opinions and have good self-confidence to fulfill the indicator, which states that the student has been creative.
CONCLUSION

Based on the results of classroom action research (CAR) that has been carried out for two cycles in increasing science creativity in the water cycle material through a contextual approach in grade 5 MI Yaa Bunayya it can be concluded that learning using a contextual system can increase student creativity. This can be seen when learning students who were previously passive become more active, so, in education, students play a lot of roles and make students more creative in learning. Increased student creativity can be seen from cycle I to cycle II. In cycle, I, the total score obtained by students was 130, and a percentage of 65% was included in the category of sufficient creativity. In comparison, in cycle II the invention increased with a total score of 175 and a percentage of 87.5%, included in the very good Creativity category.

REFERENCES

Sofia Sebayang, Tiur Rajagukguk. “PENGARUH PENDIDIKAN, PELATIHAN DAN MOTIVASI KERJA TERHADAP KINERJA GURU DI SD DAN SMP SWASTA BUDI MURNI 3 MEDAN.” Jurnal Ilmu Manajemen METHONOMIX 2, no. 2 (2020).
